Volume 17, Issue 68 (9-2023)                   etiadpajohi 2023, 17(68): 181-200 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Norallahpour S, Abbassi daloii A, Ziaolhagh S J, Barari A. The Protective Effects of Endurance Training and Crocin on Tissue Changes of the Cerebral Cortex in an Animal Model of Methamphetamine Addiction. etiadpajohi 2023; 17 (68) :181-200
URL: http://etiadpajohi.ir/article-1-2900-en.html
Associate Professor, Department of Sports Physiology, Islamic Azad University, Ayatollah Amoly Branch, Amol, Iran.
Abstract:   (1015 Views)
Objective: The present research aimed to investigate the protective effects of endurance training and crocin on tissue changes of the cerebral cortex in an animal model of methamphetamine addiction. Method: In this experimental study, 40 female Wistar rats from Shahrood University of Medical Sciences weighing 140-160 grams were divided into five healthy control, methamphetamine, aerobic exercise methamphetamine, methamphetamine and crocin, methamphetamine, crocin, and aerobic exercise groups. 15 mg of methamphetamine was injected intraperitoneally every 12 hours for 4 days to create an animal model of addiction. Also, the crocin dose for the samples was 40 or 80 mg/kg injected intraperitoneally, which was mixed with distilled water and was performed over 5 days. Aerobic exercise program including running on a treadmill 12-15 meters per minute for five days a week was implemented for eight weeks. After anesthesia, an autopsy was performed and samples of cerebral cortex tissue were taken. Kruskal-Wallis test was used to analyze the data and compare the rank values. Results: The results showed that in the animal model of methamphetamine addiction, tissue and cellular disorganization, changes in the shape and size of pyramidal neurons, and a decrease in the number of microglia cells were observed compared to the control group. Endurance training, consumption of crocin supplementation, and aerobic exercise, along with consumption of crocin supplementation, were associated with improved tissue and cellular changes in the cerebral cortex tissue in the animal model of methamphetamine addiction compared to the methamphetamine group. Conclusion: It seems that aerobic exercise and crocin supplementation can help reduce tissue damage and improve the neural factors of the cerebral cortex in the animal model of methamphetamine addiction.
Full-Text [PDF 887 kb]   (718 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/04/15 | Accepted: 2023/09/16 | Published: 2023/09/25

References
1. حاجیها، ضحی؛ بهرامی احسان، هادی و پورنقاش تهرانی، سید سعید (1401). ارزیابی کیفی روش‌های ترک اعتیاد بر اساس تجارب شخصی زنان وابسته به مواد و ارائه راهکارهای ارتقاء بخش کیفیت درمان. فصلنامه علمی اعتیاد پژوهی، 16(63)، 7-42.
2. داودی دهاقانی، ابراهیی (1401). رهیافت‌های مدیریت انتظامی در پیشگیری از جرایم زنان وابسته به مواد. فصلنامه علمی اعتیاد پژوهی، 16(65)، 181-204.
3. رسولی جزی، هما؛ آب آب زاده، شیما؛ سلیمانی، منصوره؛ مهدی زاده، مهدی و شب خیز، فاطمه (1399). اثرات طولانی مدت (سه ماه) ورزش هوازی تردمیل و عصاره رزماری (100 میلی‌گرم در هر کیلوگرم وزن) بر نورودژنراسیون هیپوکامپ در موش‌های صحرایی پیر نر. مجله علوم پرشکی رازی، 27(1)، 150-142.
4. صداقت، حمید؛ احمدی، سیروس؛ مختاری، مریم و صرامی فروشانی، حمید (1402). رابطه شاخص‌های توسعه اقتصادی-اجتماعی و مرگ و میر ناشی از مصرف مواد مخدر در ایران در دوره 1399-1370: یک تحلیل سری زمانی. فصلنامه علمی اعتیاد پژوهی، 17(67)، 329-345.
5. نعمت‌شاهی، محمد؛ میرحمیدی، سید مهدی و اسدی، عاطفه (1399). تأثیر ریشه خشک شده زرشک بر علائم سندرم ترک مواد افیونی در بیماران تحت درمان نگهدارنده با متادون - کارآزمایی بالینی دوسوکور. مجله گیاهان دارویی، 19(74)، 335-342.
6. یاوری بافقی، امیرحسین (1402). بررسی وضعیت امکانات ورزشی و نگاه درمانگران به ورزش در مراکز درمان و بازتوانی ترک اعتیاد. فصلنامه علمی اعتیاد پژوهی، 17(67)، 181-196.
7. Biedermann, S. V., Fuss, J., Steinle, J., Auer, M. K., Dormann, C., Falfán-Melgoza, C., & Weber-Fahr, W. (2016). The hippocampus and exercise: histological correlates of MR-detected volume changes. Brain structure and function, 221, 1353-1363. [DOI:10.1007/s00429-014-0976-5] [PMID]
8. Cheng, S. M., & Lee, S. D. (2022). Exercise training enhances BDNF/TrkB signaling pathway and inhibits apoptosis in diabetic cerebral cortex. International journal of molecular sciences, 23(12), 6740-6760. [DOI:10.3390/ijms23126740] [PMID] [PMCID]
9. Chinnasamy, S., Zameer, F., & Muthuchelian, K. (2020). Molecular and biological mechanisms of apoptosis and its detection techniques. Journal of oncological sciences, 6(1), 49-64. [DOI:10.37047/jos.2020-73477]
10. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences, 108(7), 3017-3022. [DOI:10.1073/pnas.1015950108] [PMID] [PMCID]
11. Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage, 166, 230-238. [DOI:10.1016/j.neuroimage.2017.11.007] [PMID]
12. Frost, M. E., Peterson, V. L., Bird, C. W., McCool, B., & Hamilton, D. A. (2019). Effects of Ethanol Exposure and withdrawal on neuronal morphology in the agranular insular and prelimbic cortices: Relationship with withdrawal-related structural plasticity in the nucleus accumbens. Brain sciences, 9(8), 180-195. [DOI:10.3390/brainsci9080180] [PMID] [PMCID]
13. Gomez-Pinilla, F., & Hillman, C. (2013). The influence of exercise on cognitive abilities. Comprehensive physiology, 3(1), 403-425. [DOI:10.1002/cphy.c110063] [PMID] [PMCID]
14. Lam, J. R., Schneider, J. L., Zhao, W., & Corley, D. A. (2013). Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. Jama, 310(22), 2435-2442. [DOI:10.1001/jama.2013.280490] [PMID]
15. Lynch, W. J., Peterson, A. B., Sanchez, V., Abel, J., & Smith, M. A. (2013). Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neuroscience & biobehavioral reviews, 37(8), 1622-1644. [DOI:10.1016/j.neubiorev.2013.06.011] [PMID] [PMCID]
16. Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., & Düzel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage, 131, 142-154. [DOI:10.1016/j.neuroimage.2015.10.084] [PMID]
17. Marques, E., Vasconcelos, F., Rolo, M. R., Pereira, F. C., Silva, A. P., Macedo, T. R., & Ribeiro, C. F. (2008). Influence of chronic exercise on the amphetamine‐induced dopamine release and neurodegeneration in the striatum of the rat. Annals of the New York academy of sciences, 1139(1), 222-231. [DOI:10.1196/annals.1432.041] [PMID]
18. Miladi-Gorji, H., Rashidy-Pour, A., Fathollahi, Y., Akhavan, M. M., Semnanian, S., & Safari, M. (2011). Voluntary exercise ameliorates cognitive deficits in morphine dependent rats: the role of hippocampal brain-derived neurotrophic factor. Neurobiology of learning and memory, 96(3), 479-491. [DOI:10.1016/j.nlm.2011.08.001] [PMID]
19. Oruc, S., Gönül, Y., Tunay, K., Oruc, O. A., Bozkurt, M. F., Karavelioğlu, E., & Celik, S. (2016). The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life sciences, 154, 79-86. [DOI:10.1016/j.lfs.2016.04.028] [PMID]
20. Pitsikas, N., & Tarantilis, P. A. (2018). Effects of the active constituents of Crocus sativus L. crocins and their combination with memantine on recognition memory in rats. Behavioural pharmacology, 29(5), 400-412. [DOI:10.1097/FBP.0000000000000380] [PMID]
21. Płaźnik, A. (2018). Dopaminergic system activity under stress condition-seeking individual differences, preclinical studies. Psychiatria Polska, 52(3), 459-470. [DOI:10.12740/PP/80500] [PMID]
22. Sadri-Vakili, G., Kumaresan, V., Schmidt, H. D., Famous, K. R., Chawla, P., Vassoler, F. M., & Cha, J. H. J. (2010). Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. Journal of neuroscience, 30(35), 11735-11744. [DOI:10.1523/JNEUROSCI.2328-10.2010] [PMID] [PMCID]
23. Samarghandian, S., & Farkhondeh, T. (2020). Saffron and neurological disorders. (Ed, Sarwat, M & Sumaiya, S). Saffron The Age-Old Panacea in a New Light (pp. 103-116). Amsterdam: Elsevier Inc. [DOI:10.1016/B978-0-12-818462-2.00009-7]
24. Sameni, H. R., Ramhormozi, P., Bandegi, A. R., Taherian, A. A., Mirmohammadkhani, M., & Safari, M. (2016). Effects of ethanol extract of propolis on histopathological changes and anti‐oxidant defense of kidney in a rat model for type 1 diabetes mellitus. Journal of diabetes investigation, 7(4), 506-513. [DOI:10.1111/jdi.12459] [PMID] [PMCID]
25. Shafahi, M., Vaezi, G., Shajiee, H., Sharafi, S., & Khaksari, M. (2018). Crocin inhibits apoptosis and astrogliosis of hippocampus neurons against methamphetamine neurotoxicity via antioxidant and anti-inflammatory mechanisms. Neurochemical research, 43, 2252-2259. [DOI:10.1007/s11064-018-2644-2] [PMID]
26. Stevenson, M. E., Kay, J. J., Atry, F., Wickstrom, A. T., Krueger, J. R., Pashaie, R. E., & Swain, R. A. (2020). Wheel running for 26 weeks is associated with sustained vascular plasticity in the rat motor cortex. Behavioural brain research, 380(112447), 1-15. [DOI:10.1016/j.bbr.2019.112447] [PMID]
27. Swenson, S., Blum, K., McLaughlin, T., Gold, M. S., & Thanos, P. K. (2020). The therapeutic potential of exercise for neuropsychiatric diseases: A review. Journal of the neurological sciences, 412(116763), 1-10. [DOI:10.1016/j.jns.2020.116763] [PMID]
28. Voss, M. W., Vivar, C., Kramer, A. F., & Van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in cognitive sciences, 17(10), 525-544. [DOI:10.1016/j.tics.2013.08.001] [PMID] [PMCID]
29. Yuan, Y., Shan, X., Men, W., Zhai, H., Qiao, X., Geng, L., & Li, C. (2020). The effect of crocin on memory, hippocampal acetylcholine level, and apoptosis in a rat model of cerebral ischemia. Biomedicine & pharmacotherapy, 130(110543), 10-21. [DOI:10.1016/j.biopha.2020.110543] [PMID]
30. Zhang, H., Song, B., Gong, G., Wang, Y., Qin, J., Yang, Y., & Xu, Y. (2012). Bone marrow stromal cells transplantation impact spatial learning and memory and the expression of BDNF and P75NTR in rats with chronic cerebral ischemia. Life science journal, 9(4), 20-45

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Quarterly Research on Addiction

Designed & Developed by : Yektaweb